Results (continued)

Western blot

Results

Background

We have previously demonstrated that mATRC-101 inhibits tumor growth in a xenograft mouse model. We used flow cytometry to quantitate Cytotoxic CD8+ T cells and CD11b+ conventional type 1 dendritic cells (cDC1), CD103+ conventional type 2 dendritic cells (cDC2), and E-cadherin+ E-cadherin+ (E-cad) cells in the blood and subsequently statistically significant increases in tumors.

ATRC-101 is the clinical candidate with an engineered Fv and human Fc. mATRC-101 designates an antibody comprised of the mouse Fc (IgG2a) region and the parental (101P) or engineered Fv (101).

Summary

Results

ATRC-101 Drives Potent Single-Agent Activity in Mouse Syngeneic Tumor Models via a Novel Cellular Mechanism of Action

Alexander Scola, Amy Manning-Bridg, Jeff DeFazio, Yonee Leung, Jia Ajplen, Caihui Cui, Wei Cao, Daniel Santi, Szilvia Millet, Neha Vaid, Felix Chu, Mauricio Velasco-Delgado, Shaun Lipper, Gilson Baez, Michael Hartfield, Jedrik Sepuyg, Dinh Chuang, Dai-Chen Wu, Erin Wachtler, Anne W., Jared Aveline, John Vivian, Ryan Goyman, Mark Wlodarski, Dongyong Sun, Jonathan Swirskie, William R. Robinson,3 Tito A. Serafini,2,3 Cecilia E. Eslenting,1 Norman M. Greenberg

1. Amexa, Inc, South San Francisco, CA. 2. Department of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA.

Abstract No: 689

Abstract No: 689

We have previously demonstrated that mATRC-101 inhibits tumor growth in a xenograft mouse model. We used flow cytometry to quantitate Cytotoxic CD8+ T cells and CD11b+ conventional type 1 dendritic cells (cDC1), CD103+ conventional type 2 dendritic cells (cDC2), and E-cadherin+ E-cadherin+ (E-cad) cells in the blood and subsequently statistically significant increases in tumors.

ATRC-101 is the clinical candidate with an engineered Fv and human Fc. mATRC-101 designates an antibody comprised of the mouse Fc (IgG2a) region and the parental (101P) or engineered Fv (101).

Summary

We acknowledge the contributions of our colleagues from the Imede, in vivo pharmacology, translational sciences, in vitro pharmacology, and cell biology groups. These include Ananda, Haley Foner, Eri Bowley, Charlotte Callan, Russian Shifman, Nicole Huker, Katrina Harris, Stephanie Lewis, Dinh Chuang, Yan Wu acknowledge editorial assistance from Jen Medaris, PhD. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and should not be attributed to the sponsor.